

Implementation of the guidelines

The WHO air quality quidelines set goals for protecting public health on a worldwide scale. They were established through a rigorous process of revision and evaluation of scientific evidence on the health effects of air pollutants and, like other WHO guidelines, are not legally binding recommendations. National standards are developed through a policy-making process by each country, have legal status and are based on the specific conditions of the country itself. Supranational (e.g. EU) and regional standards may also be developed, depending on the political structure of the area. The establishment of adequate legislation for protection of the population from the health effects of air pollutants is an essential step for all countries. The transfer of guidelines into practicable standards is an integral part of public health and environmental protection policy and is a challenge for most countries. The continuous improvement of air quality requires a formidable effort by those countries dedicated to addressing this major environmental health problem in order to progressively reduce the potential health effects, irrespective of the air pollution level at which they start. Abatement measures and air quality improvement should aim to achieve the interim targets and, finally, the air quality guideline (AQG) levels as expeditiously as possible (additional guidance on interim targets can be found in section 2.5.3). Up-todate knowledge and information on levels of air pollution and guidance on interim targets can increase awareness and provide an incentive for the adoption of measures to reduce the level of pollutants, monitor progress and evaluate results.

This chapter examines that process and provides an overview of the general usefulness of the WHO air quality guidelines, with an emphasis on the careful assessment of national needs, capacity-building and the additional elements that are necessary in the development of national standards. Once standards have been established, there is a need for a proper implementation strategy and management of air quality with monitoring, training and enforcement. Health risk assessment is an essential tool to inform public policy decisions by providing an understanding of pollution-related disease burden and the potential for burden reduction. Collaborations of the health-care sector and many different stakeholders are essential to maintain public health protection.

6.1 Significance of the guidelines: an evidence-informed decision support tool

AQG levels are widely seen as a practical instrument for advancing emission reductions and the design of effective measures and policies. WHO guidelines equip policy-makers and other end-users across a range of different needs with the necessary evidence base to inform their decisions. They serve as a reference for assessing whether, and how much, the exposure of a population

(including particular vulnerable and/or susceptible subgroups) is associated with health concerns. For various target audiences and for each stakeholder group, they can function as a critical tool to be used in multiple ways and integrated into their work for years to come.

6.1.1 Use by authorities

Health risk assessments are an important tool for authorities (at international to local levels) when deciding on necessary emission reduction measures because they provide estimates of the health burden/impacts on the population and, therefore, allow a comparison of the consequences among different policy options. These options can include measures to reduce emissions from various sources, measures aimed at reducing concentrations of pollutants in ambient air, measures aimed at reducing exposure of individuals and the population, and/or measures related to urban planning. In principle, the priority should be to prevent emissions of pollutants and reduce them at source.

6.1.2 Use by technical experts and decision-makers

For technical experts and decision-makers, the guidelines are vital in providing information on concentration-response relationships that give insight into the consequences of certain regulations or standards on the associated health effects. They are essential quantitative inputs to quantify the impact of air pollution on health and can be useful at the national and international levels when developing air quality limits or standards as they provide the scientific basis to identify the levels at which air pollution can cause a significant and unacceptable health impact. They provide valuable information used in cost–effectiveness and cost–benefit analyses of various policies and, based on these recommendations, national governments and international organizations can be better informed when introducing air quality standards to ensure the protection of people's health.

6.1.3 Use by civil society, patient and other advocacy groups

They can also be used by civil society, patient and other advocacy groups to raise awareness and encourage actions to protect the population, including susceptible groups such as children, from exposure to air pollution. They can be used to help inform these groups to advocate to policy-makers to improve air quality levels. They are of great value for communicating the health risks and potential cost–effective solutions to reducing air pollution. Organizations responsible for risk communication and general awareness-raising can use these guidelines for promotion campaigns and appropriate risk communication. The guidelines provide scientific evidence on a range of health effects associated with air pollutants and facilitate appropriate risk communication to specific vulnerable and susceptible groups. Therefore, they need to be promoted broadly to citizens, national and local authorities, and nongovernmental organizations responsible for risk communication.

6.1.4 Use by health/environmental impact assessment practitioners

For health/environmental impact assessment practitioners, these guidelines provide concentration-response relationships that give insight into the expected health effects at observed or expected air pollution levels under various future scenarios. They provide vital input to assist in deriving the health burden or impact of air pollution; in that sense, they can be used when conducting studies to obtain an evaluation of the magnitude of the health problem for a particular situation. The systematic reviews developed in support of these guidelines will support practitioners in raising awareness of the credibility of the issue of air pollution as a public health problem and in applying the recommended concentration-response relationships uniformly so as to justify their use in different countries.

6.1.5 Use by researchers and academics

Researchers and academics will also benefit from the guidelines as they clearly identify critical data gaps that need to be filled in the future through a structured research agenda in order to better protect the population from the harmful effects of air pollution. In addition, the importance of the burden of disease related to air pollution provides an opportunity to justify the inclusion of content related to the guidelines in university curricula for a variety of medical professionals and scientists.

6.2 Assessment of national needs and capacity-building

National needs, including the need for capacity-building, differ greatly among countries. They depend in great part on the existence and level of implementation of national, regional and international policies. In many countries, air pollution is now perceived as a major and growing environmental and public health problem. Nevertheless, significant differences are still evident in multiple areas:

- the existence and operation of air pollution monitoring systems;
- the availability of and public access to data;
- air quality management policies, regulations and standards;
- the availability of trained human resources to understand, assess and monitor health impacts; and
- implementation of universal health coverage and cross-sectoral collaboration.

The existence and operation of air pollution monitoring systems differs by country and city.

Conditions at the country and city levels, specifically for the annual mean PM_{2.5}, have been documented as interactive maps as part of the WHO Global Health Observatory (WHO, 2021a). Progress in combining satellite remote sensing, global chemical transport models, land-use regression models, high-resolution dispersion models and surface measurements (including those made using low-cost sensors) has made information on exposure increasingly available, including in some of the most highly polluted and data-poor regions. However, these estimates need to be grounded and evaluated with existing or new ground-based monitoring; further development of these methods depends to a large extent on the availability of surface measurements in all regions of the world.

The availability of and public access to data to assess population exposure to ambient air pollution and quantify the health impacts or burden related to air pollution for past and current scenarios or future projections also differs by country.

Differences also exist between countries in the development and implementation of air quality management policies, regulations and standards that take into consideration the latest research evidence on the health impacts of ambient air pollutants. Policies to reduce emissions of air pollutants, which are clearly preferable and should be the main focus of any air quality management plan, are highly context dependent: what might be effective and contribute to improving public health in one setting might not work in another. Therefore, understanding the particular situation, including the main emissions, sources and nature of the populations exposed, is critical to the development of effective risk management policies and strategies and is important for decision-making. Most critical is to understand the current level of air pollution in relation to the guidelines.

Lastly, there are differences in the implementation and strengthening of universal health coverage and in the level of cooperation of the health sector in decision-making with other sectors. These include the environment, transport, land planning, housing and energy, agriculture, industrial, and building sectors at the national, regional and, in some cases, international levels.

6.3 Moving from guidelines to air quality standards

The primary aims of these guidelines are to provide a uniform basis for the protection of public health from adverse effects of air pollution and to eliminate or reduce exposure to those pollutants known or likely to be hazardous. Based on the extensive scientific evidence available, the guidelines aim to identify the optimal level of air quality to protect public health in different contexts; they

provide a pathway to countries to transform the recommended AQG levels into legally enforceable standards. This section discusses ways in which this may be done, drawing from and expanding upon previous documents (WHO Regional Office for Europe, 1987, 1998, 2000b), each of which is a useful resource on this topic. The discussion here is limited to pollutants measured in ambient air and does not include the setting of emission standards.

6.3.1 Air quality standards

Air quality standards are the cornerstone of air quality management. Such standards are adopted and enforced by regulatory authorities to define the acceptable level of air pollution for a country or region. They define the level of an air pollutant, such as a concentration measured in ambient air for a specific averaging time. Unlike the case for a guideline value, several additional elements are usually specified in the definition of a standard. These include the averaging time, the measurement technique and strategy, data handling procedures (including quality assurance/quality control), and the statistics (for example, choice of a particular percentile) and form used to derive the value to be compared with the standard. The definition of a standard may also include a permitted number of exceedances of a certain numerical value in a given period.

Air quality standards may be based solely on scientific evidence and public health considerations. However, other features such as legal aspects, costbenefit or cost-effectiveness may also be examined. In practice, there are generally several opportunities within a legal framework to address economic issues, as well as issues related to technological feasibility, infrastructural measures and sociopolitical considerations. These can be considered during the standard-setting process or when designing appropriate measures to control emissions. This process may result in the establishment of multiple standards, such as an adverse effect-oriented standard as a long-term goal and less stringent interim standards to be achieved within shorter periods of time.

Standards also depend on political choices about which health and environmental effects should be prevented and the extent to which populations should be protected. They also depend on the country's economic development level, capability in air quality management and other factors. Given that the benefits of clean air policies largely outweigh the cost of managing air pollution (Amann et al., 2017), the political choice for the adoption of rigorous standards may find broad societal support for economic reasons. Some countries have separate standards for the protection of public health and for the environment. Moreover, the stringency of a standard can be influenced by provisions designed to account for individuals or populations who might be more susceptible to the effects of

air pollution, such as children, older adults, and individuals with asthma or other pre-existing diseases. Consideration of environmental justice or other equity issues that affect disadvantaged segments of the population may be accounted for when deriving standards. It also might be important to specify whether effects are considered for individual pollutants or for a combined exposure to several pollutants. Air quality standards should be regularly reviewed and revised as new scientific evidence emerges on adverse effects on public health and the environment.

6.3.2 Legal aspects

Within established legal frameworks, and using the WHO air quality guidelines as a starting point, the development of standards involves a consideration of several aspects. These are in part determined by the emission sources, characteristics of populations and physical properties of the environment, and include the following determinations: (i) which pollutants should be regulated; (ii) the adverse health effects against which the population needs to be protected; (iii) which individuals or subpopulations are most at risk for the effects of air pollution; (iv) what level of risk and related costs for society are acceptable to the populations; (v) what uncertainties remain in the evidence base and how they will affect the decisionmaking process; and (vi) the feasibility of complying with the proposed standards (which includes assessing the costs and benefits of compliance).

Legislation on, as well as the format of, air quality standards varies from country to country but, in general, the following aspects should be considered:

- identification and selection of the pollutants to which the legislative instrument will apply;
- the numerical value of the standards for the various pollutants or the process for making decisions about the appropriate standards, applicable detection methods and monitoring methodology;
- actions to be taken to implement the standard, such as the definition of the time frame needed/allowed for achievement of compliance with the standard, considering emission control measures and necessary abatement strategies; and
- identification of the responsible enforcement authorities.

Depending on their position within a legislative framework, standards may or may not be legally binding. In some countries, the constitution contains provisions regarding the protection of public health and the environment. The development of a legal framework based on constitutional provisions generally comprises two regulatory actions. The first is the enactment of a formal legal instrument, such as an act, law, ordinance or decree. The second is the development of regulations, by laws, rules and orders.

6.3.3 Factors to be considered in setting standards

The recommendations (Chapter 3) of these WHO air quality guidelines are based on serious health effects (mortality or hospital admissions/emergency room visits) in a general population and are not designed to focus on the protection of sensitive groups. It is notable that epidemiological studies of the general population include sensitive groups, and these sensitive groups contribute, in part, to the reported risk estimates. Furthermore, such studies often do not provide separate CRFs for various subgroups of the population. However, in setting a standard for the control of an environmental pollutant, consideration may be given to additional aspects, including the adverse effects that the standard will address. A hierarchy of effects on health can be identified, ranging from minor and temporary illnesses to acute, severe illness, chronic disease and death. Distinguishing between adverse and non-adverse effects can pose considerable difficulties (Thurston et al., 2017). Of course, more serious effects are generally accepted as adverse. In considering effects that are either temporary and reversible or involve biochemical or functional changes with uncertain clinical significance, judgements must be made as to which of these less serious effects should be considered adverse. With any definition of adversity, a significant degree of subjectivity and uncertainty remains. Judgements as to adversity may differ between countries because of factors including different cultural backgrounds and different levels of health status.

Susceptible populations or groups are defined here as those who are more sensitive because of impairment by concurrent disease or other physiological limitations and specific characteristics that make the health consequences of exposure more significant (e.g. the developmental phase in children and reduction in the physiological reserve capacity of older people). Other vulnerable groups may also be judged to be at special risk owing to their exposure patterns or to having an increased effective dose for a given exposure (e.g. outdoor workers, athletes). These populations may vary across countries owing to differences in the number of people with inadequate medical care; existence of endemic disease; prevailing genetic factors; or prevalence of debilitating diseases, nutritional deficiencies and lifestyle factors. The setting of air quality standards generally takes into account other considerations beyond public health impacts such as economic and technological aspects and, as such, is considered a political decision.

Another factor to be considered in developing standards is information about the concentration–response relationship for the pollutant of concern. Where adequate evidence is available, concentration–response relationships for a number of pollutants are presented in this update of the WHO air quality guidelines.

In developing standards, regulators should consider the degree of uncertainty about concentration–response relationships. Differences in the population structure (age, health status), climate (temperature and humidity) and geography (altitude, different ecosystems) can have an impact on the prevalence, frequency and severity of effects and may modify the concentration–response relationships provided in these guidelines in their application to a particular population.

Important factors to be considered in developing standards are the number of people who are exposed to concentrations of concern and the distribution of exposure among various population groups at current pollution concentrations and at the different concentrations at which standards might be set. As well as monitoring data, the results of exposure modelling can be used at this stage of a risk assessment. The origin of background air pollution, including long-range pollution transport and its contribution to ambient levels, should also be evaluated when considering standards. It is important that guidelines are health based and, therefore, do not consider background values, whereas standards may include considerations of background levels (e.g. in the case of ozone, background increases with a warming climate).

The extent to which ambient air quality estimates from monitoring networks or models correspond to personal exposure in the population should also be considered in standard setting. This will depend on the pollutant in question (e.g. personal exposure to carbon monoxide is poorly characterized by fixed-site monitors) and other local characteristics, including lifestyle, climatic conditions, spatial distribution of pollution sources and local determinants of pollution dispersion.

Other important exposure-related concerns include how much total human exposure is due to ambient, outdoor sources as opposed to indoor sources, and how to apportion the regulatory burden among the different routes of exposure (e.g. PM from outdoor sources versus PM from household cooking with fossil fuels) for pollutants where multiple routes of exposure are important. These may vary substantially between countries. For example, indoor air pollution levels are normally quite substantial in households in countries where fossil and/or biomass fuels in unvented stoves are used for cooking and heating in homes. However, further discussion of the evolving methods of exposure assessment is beyond the scope of these guidelines.

6.3.4 Risk assessment

Generally, the central question in developing air quality standards to protect public health is the degree of protection associated with the different pollution levels at which standards might be established. In the framework of quantitative risk assessment, various proposals for standards can be considered in health or ecological risk models. These models represent a tool that is increasingly used to inform decision-makers about some of the possible consequences of pollution associated with various options for standards (or, alternatively, the reduction in adverse effects associated with moving from current conditions to a particular standard). Regulatory risk assessments are likely to result in different risk estimates across countries owing to differences in exposure patterns and in the size and characteristics of susceptible and vulnerable populations at special risk.

It is important to recognize that there are many uncertainties at each stage of a regulatory risk assessment. The results of sensitivity and uncertainty analyses should be presented to characterize the impact of major uncertainties on the risk estimates. In addition, the methods used to conduct the risk assessments should be clearly described and the limitations and caveats associated with the analysis should be discussed. In addition, the degree of acceptability of risk may vary between countries because of differences in social norms and the degree of adversity and risk perception among the general population and various stakeholders. How the risks associated with air pollution compare with risks from other pollution sources or human activities may also influence risk acceptability (GBD 2019 Risk Factors Collaborators, 2020).

6.4 Air quality management

Risk to health from inhaled pollutants varies with the concentrations of pollutants inhaled and the mechanisms by which they cause adverse effects, which may be acute or chronic. The sources of exposure to airborne contaminants are myriad, even for the pollutants covered by the WHO air quality guidelines, and pollutants are encountered as people move through multiple environments throughout the day. The microenvironmental model is a comprehensive construct for exposures to inhaled agents and for considering risk reduction through air quality management (National Research Council, 2012). A microenvironment is a place where time is spent and that has a particular pollutant concentration profile during the time spent there; for example, a motor vehicle represents a microenvironment during the time spent commuting. A microenvironment with a high concentration of pollution, such as an urban street canyon, could make a substantial contribution to total exposure, even if only a brief period of time were

spent there. This model is useful for considering how air quality guidelines and standards can reduce personal exposures and for linking air quality management to benefit public health.

This model is also advantageous for considering the numerous microenvironments relevant to air pollution and associated risks to health, and how characteristics of the environment determine exposures. Table 6.1 lists some key microenvironments in urban environments, the pollution sources within these environments and some of the main pollutants present in them. The residence is particularly important because most people spend the majority of their time at home. In urban areas, the air contaminants in the home include those generated by indoor sources, such as cooking and tobacco smoking, and the indoor penetration of outdoor air pollutants, including PM and carbon monoxide generated by local traffic. Streets, which may have hot spots of air pollution generated by traffic or industrial sources, are another key and distinct microenvironment, and one that can be directly benefited by air quality management. The relative significance of different microenvironments across the world varies by where time is spent, the nature of buildings and housing, the distribution of sources and the stringency of measures taken to manage air quality (Samet, 2010).

Microenvironment	Sources	Pollutants
Home	Cooking, space heating, parked vehicles, hobbies, smoking, household products, pets, rodents, insects	PM, CO, NO _x , VOCs, allergens
Transportation environments	Vehicle and industrial emissions, road dust, background pollution, smoking	PM, including ultrafine PM, CO, NO _x , O ₃ , VOCs, aeroallergens, carcinogens
Streets	Vehicle emissions, road dust, background pollution	PM, including ultrafine PM, CO, NO _x , O ₃ , VOCs, carcinogens, lead
Work environments	Industrial processes, smoking, background pollution	PM, CO, VOCs, NO _x , carcinogens
Entertainment environments	Cooking and space heating, background pollution, smoking	PM, VOCs, carcinogens

Table 6.1. Sources of air pollution in urban microenvironments

CO: carbon monoxide; NO_x : nitrogen oxides; O_3 : ozone.

Source: reproduced from Samet (2010) with permission from publisher.

The WHO air quality guidelines address air pollution and, hence, cover the many microenvironments where people spend time. At times, the increased breathing rate that results from certain activities may increase the dose of inhaled pollutants at a given concentration. In outdoor environments, there may be high-level exposures, sometimes transient, that may reflect particular industrial sources, traffic hot spots or more general sources, for example wildfires or agricultural burning. Risks for some adverse health effects, such as lung cancer or all-cause mortality, are driven by longer-term and cumulative exposures. Hence, the WHO air quality guidelines include both 24-hour (or even shorter time periods, such as 1 hour for nitrogen dioxide or 10 minutes for sulfur dioxide) and annual averaging times. The verification code for this document is 350158

In many countries around the world, most time is spent indoors, making indoor microenvironments critical in determining the total exposure to air pollution. Ambient air pollution penetrates indoors, so exposures to pollutants that are covered by the guidelines also occur in homes and other indoor places. Conversely, indoor sources do contribute to outdoor air pollution. An example is the burning of biomass fuels for heating and cooking. The extent of penetration of ambient pollutants into indoor environments varies across pollutants. For PM, the degree of penetration depends on the size distribution of the ambient PM, whereas for gases the reactivity of the pollutant is key (e.g. ozone is highly reactive, which causes concentrations to quickly decay indoors). Also critical are the characteristics of the building, that is, how airtight it is and whether it has an air handling system (and, if so, its characteristics) or an air cleaning system for particles and gases. In higher-income countries, a central air handling system (i.e. a heating, ventilation and air-conditioning system) may be equipped to remove particles.

Modification of time–activity patterns is a widely used governmental and personal strategy to reduce pollution exposure. Air quality indices inform the public when concentrations have reached a level at which health is threatened. Typically, recommendations are tailored to the level reached and the susceptibility of those exposed, for example, people with asthma; avoiding outdoor environments and outdoor exercise is an anchoring strategy. In some locations, particularly those where air pollution is known to reach very high levels, people may use personal protection and air purifiers. These approaches vary in their effectiveness, but neither is a satisfactory alternative to governmental actions to reduce outdoor pollution concentrations.

The development of low-cost monitors for airborne PM allows people to measure one key air pollutant in their specific microenvironments (Lewis, von

Schneidemesser & Peltier, 2018). Although the accuracy of these monitors does not reach the level required for reference monitors used by regulatory agencies, they can provide a useful complement to reports from governmental agencies and can be a valuable resource when central site monitoring of known accuracy is not available. The results can be complementary if aggregated for so-called citizen science purposes, particularly by improving the spatial resolution over that provided by regulatory monitoring networks. People also use the personal monitoring results for guiding their time–activity patterns, particularly those related to time spent outdoors.

Air quality regulation and management include various policy measures to protect population health. Such policy measures need to be informed by previous evidence regarding their efficacy. A specific type of applied research activity, accountability research, assesses whether a certain policy has had an effect on reducing emissions and decreasing concentrations. Such research may also contribute to estimating the burden of disease that might be avoided if certain actions are taken (van Erp et al., 2008).

A proper evaluation of the evidence for effective air quality interventions is under development and a systematic review of the available evidence is accessible from the Cochrane Library (Burns et al., 2019). This document articulates the challenges and limitations of this kind of research. Few existing studies directly examine the effects of these interventions on environmental concentrations of pollutants or the resulting health outcomes. Therefore, the health benefits of interventions must be inferred from the reductions in emissions. In the future, as new policies are introduced, decision-makers should consider a built-in evaluation component, which could facilitate more systematic and comprehensive evaluations.

Specific evidence-informed suggestions for air quality management, according to a hierarchy of interventions, have been proposed (PHE, 2020). In this case, the first priority is preventing, reducing or replacing polluting activities to reduce emissions. The second priority is taking actions to reduce the concentration of air pollution once the polluting activity has occurred and the third is individual avoidance of exposure. The hierarchy for the most effective approaches starts with reducing emissions, followed by reducing concentrations and then reducing exposure. Five areas for potential action have been suggested:

- vehicles and fuels, including for heating
- spatial planning
- industry
- agriculture
- behavioural change.

In addition, high-level interventions have been identified with the potential to benefit health by reducing emissions, concentrations and exposures to the pollutants that cause harm. A report from a WHO consultation in 2019 (WHO, 2020a) provides an overview of the issues related to interventions that are critical for managing air pollution exposure at individual level (e.g. physical activity, use of face masks and air purifiers). A Cochrane review on the topic is also in press; the review protocol has been published (Janjua et al., 2019).

6.5 Methodological guidance for health risk assessment of air pollution

An air pollution health risk assessment estimates the health impact to be expected from measures that affect air quality in different socioeconomic, environmental and policy circumstances. As such, it is an important tool for informing public policy decisions. This section describes in broad terms how the health risks of outdoor air pollution and its sources are estimated and provides an overview of the general principles for the proper conduct of health risk assessment for various scenarios and purposes. This section draws from a previous document (WHO Regional Office for Europe, 2016b) to provide a general understanding of the concepts, scope and principles of health risk assessments.

Health risk assessments aim to estimate the risks of past, current or future exposure to air pollution and of the changes in exposure that may result from planned policies or other modifications of air quality. An air pollution health risk assessment may be quantitative or qualitative; it generally assesses (i) the amount of air pollution present (i.e. pollutant concentrations); (ii) the amount of contact (exposure) of the targeted population; and (iii) how harmful the concentration is to human health (i.e. the resulting health risks to the exposed population). The estimates provided by a health risk assessment are intended to inform the decisions of policy-makers and/or other stakeholders.

As an analytical tool, health risk assessments include a comprehensive assessment of the health impacts of policies, programmes and projects that affect environmental conditions – known as a health impact assessment. Health risk assessments and health impact assessments are different concepts, although the two terms are sometimes used interchangeably. A health impact assessment, which is an extension of the overall risk assessment, is often characterized by a combination of procedures, methods and tools used to judge the effects that a policy, programme or project may have on the health of a population and on the distribution of those effects within the population; it may also identify appropriate actions to manage those effects.

The main purpose of a health risk assessment is to answer policy questions about the likely health impacts of planned policies or modifications of those policies.

Air pollution health risk assessments are often used to answer the following policy questions.

- What is the public health burden associated with current levels of air pollution?
- What are the human health benefits associated with changing an air quality policy or applying a more stringent air quality standard?
- What are the human health impacts of emissions from specific sources or selected economic sectors, and what are the benefits of policies related to these?
- What are the human health impacts of current policy or implemented actions?
- What are the policy implications of the uncertainties of the assessment?

The first step in a health risk assessment is planning. This includes the definition of the policy question to be evaluated, determination of the availability of data and resources, and selection of appropriate methods and tools. Sources of data required for the health risk assessment include, but are not limited to, the level of air pollution, the exposed population and the health effect, and the relationship of risk to exposure (e.g. CRF). During the planning process, selection of the methods to be implemented may depend on data availability or may determine the data requirements. In addition, the identification of different tools that will be useful in the health risk assessment occurs in the planning step.

Estimating population exposure to air pollutants is the next step in the health risk assessment. Data on population exposure to air pollutants generally come from monitoring by local or national institutions. Estimates of population exposure based on measured air pollution data are often limited by the restricted geographical and time coverage of the data. Recently, predicted estimates of pollutant concentrations from statistical models have become more common and can be used to estimate exposure in locations that do not have air quality monitors. Progress in combining satellite remote sensing, global chemical transport modelling, land-use regression models and high-resolution local dispersion models in combination with existing ground-based monitoring has made information on key air polluted and data-poor regions. It may be difficult to harmonize data from different locations, since measurements and model predictions are often made using different procedures and techniques.

When estimating the change in population exposure caused by a hypothetical change in emissions or pollutant concentrations, monitoring data may be used as a baseline level. However, air quality modelling is needed to estimate future concentration changes resulting from policies and technological innovations.

The next step in the health risk assessment is estimating the health risk. To provide useful advice aimed at answering a specific question, a specific health end-point or set of health end-points in a specific population must be identified. The health risk assessment is unlikely to cover the full range of possible adverse health effects in all possible groups of the population but may focus on those health effects that affect the most people or the most susceptible populations. The quantitative risk of air pollution to health in a population is usually represented by a CRF, which is typically based on a risk estimate from epidemiological studies.

Quantifying the health impact is the next step in the health risk assessment. Health risk assessments often report results in terms of the number of attributable deaths or cases of disease, years of life lost or disability adjusted life-years, or to the change in life expectancy attributable to the total exposure to air pollution or to a change in exposure. These metrics aggregate different types of health impact and can be used to highlight different aspects of the health status of a population. It is important to note that these metrics provide expected values for a whole population and cannot be applied to individuals in that population. Tools for health risk assessment calculation are widely available from WHO (AirQ+) or other sources (such as the US EPA BenMAP-CE) (Sacks et al., 2020).

In summary, an air pollution health risk assessment can quantify the health impact of air pollution or of changes in air pollution resulting from different socioeconomic, environmental or policy circumstances. In many countries, health risk assessments are formally required as part of the decision-making process for new programmes, projects, regulations and policies that may affect air quality. Those conducting a health risk assessment need to understand how to do it; know what data are available and needed, and where to find them; and know how to communicate the results. It is a challenging, yet important, task to find a balance between the complexity of information and tools used and the need to produce understandable results for policy-makers and others who do not necessarily have a technical background or expertise in the field.

6.6 Role of the health sector

Health-care professionals are now regularly faced with questions and concerns from patients about the impact that air pollution can have on their health. This holds particularly true for individuals who suffer from chronic conditions, such as asthma, COPD, diabetes, heart failure and IHD. Parents with young children also often have concerns. However, many health-care professionals working in different disease areas and settings are unable or unprepared to advise.

Engagement of the health community as trusted, connected and committed advocates is crucial. The health sector has a role in:

- raising awareness of the impact of air quality on health using evidence provided by the WHO air quality guidelines;
- advising the public and patients about how the impact of air pollutants above WHO air quality guidelines can be mitigated at an individual level; and
- joining advocacy efforts at the national and international levels to ensure that the health arguments for the WHO air quality guidelines are heard in national policy discussions.

Scientific evidence on the impact of air pollution on health is developing rapidly, and these new guidelines provide AQG levels for different pollutants based on a review of the latest evidence. However, the practical implications for patients and the public, specifically in relation to acute air pollution episodes and the impact on chronic conditions, are unclear to many in the health sector. For this reason, in addition to publishing the guidelines, further efforts are needed to promote the understanding, support and engagement of those in the health sector.

For the WHO air quality guidelines to have a significant impact on the lives of people most vulnerable and susceptible to the effects of air pollution, cooperation with professional societies is crucial to raise awareness of and strengthen the messages related to air pollution, as well as to ensure appropriate education and training for health-care workers. Examples include presenting the AQG levels and what they mean for health in a practical and easy-to-understand format, and providing guidance on what actions individuals can take to reduce exposure when the AQG levels are exceeded. Explaining the risk from air pollution to an individual in relation to other risk factors, such as smoking, is also important. There is a clear role for organizations such as medical societies and patient organizations to work with WHO to communicate the WHO air quality guidelines in the most accessible manner and tailored to the needs of different target groups.

6.7 Intersectoral and multistakeholder cooperation

In addition to the increased role that the health sector should play, intersectoral and multistakeholder action is crucial for the successful development and implementation of air quality policies, including achievement of the goals and targets of the 2030 Agenda for Sustainable Development (PHAC & WHO, 2008; WHO Regional Office for Europe, 2018). In many countries, responsibilities for air quality are shared among government institutions, but collaboration is not always optimal. Since air quality is influenced by policies formulated in diverse sectors, whole-system approaches are needed for protecting the public's health.

Key to effective air quality policy is the adoption of a whole-of-government approach. This approach involves downstream and upstream coordination among governance domains and levels, as well as horizontal cooperation across sectors, supported by the appropriate selection of interventions, financing mechanisms and legal instruments (WHO Regional Office for Europe, 2018). Specific models have been available at national level since the 1990s, such as the national environment health action plans (WHO Regional Office for Europe, 1999). An example of this model is the National Air Quality Cooperation Programme in the Netherlands, which fosters cooperation among different levels of government through consensus, legislation and public participation (Joint Task Force on the Health Aspects of Air Pollution, 2018).

In a similar vein, the Health in All Policies approach can help ensure that the health impacts of air pollution are considered in formulating policy outside the health sector (WHO, 2014d). For example, the California Health in All Policies Task Force convened a multisectoral working group to deal with the issues of transit-oriented development, including its impact on air pollution, active transportation and social cohesion (Government of South Australia & WHO, 2017). Among low- and middle-income countries, Thailand provides an example of promoting the Health in All Policies approach. In 2012 Thailand's National Health Assembly brought together all parties and sectors to exchange knowledge and formulate policy proposals on biomass burning from power plants and from forest fires related to agriculture (Government of South Australia & WHO, 2017; Rajan et al., 2017; NHCO, 2019).

Of particular importance is the exchange of knowledge and experiences, not only between government and the scientific community but also through engaging the private sector, civil society, communities and citizens. An inclusive, multistakeholder approach also contributes to building trust and legitimacy in the policy process, and results in more equitable and context-specific policies (WHO Regional Office for Europe, 2018). Moreover, civil society is a key player in raising awareness and promoting action to tackle air pollution challenges in many parts of the world. The private sector, in turn, has an important role in delivering context-relevant technological solutions and services. Therefore, government authorities can nurture a favourable environment by building capacity, promoting partnerships and aligning incentives (Joint Task Force on the Health Aspects of Air Pollution, 2018; Chatterton et al., 2017; CCAC & UNEP, 2019).

To control air pollution regionally, policy instruments are in place to facilitate dialogue, cooperation, and exchange of information and experiences among countries. These include, for example, the United Nations Economic Commission for Europe (UNECE) Convention on Long-Range Transboundary Air Pollution, the Malé Declaration on Control and Prevention of Air Pollution and Its Likely Transboundary Effects for South Asia, the Acid Deposition Monitoring Network in East Asia, the Association of Southeast Asian Nations' Agreement on Transboundary Haze Pollution, and the Eastern Africa Regional Framework Agreement on Air Pollution (CCAC & UNEP, 2019; UNECE, 2011). In particular, the Joint Task Force on the Health Aspects of Air Pollution, established within the UNECE Convention on Long-range Transboundary Air Pollution, is a well-established intersectoral platform for working on air pollution and health and for helping define priorities for action (WHO Regional Office for Europe, 2021b).

On the other hand, the 2030 Agenda for Sustainable Development offers a framework to combat air pollution at global level. Within the framework, connections can be identified between approximately 10 of the SDGs and air pollution, including implicit links at target level. SDG 17 (Partnerships for the Goals) offers targets for intersectoral, multilevel and multistakeholder collaboration to address air pollution that are aligned with the Paris Agreement on climate change (Longhurst et al., 2018).